ЭЛЕКТРОННЫЙ МИКРООММЕТР

САМОДЕЛЬНЫЕ РАДИОУСТРОЙСТВА

Новые простые схемы зарядных устройств, усилителей, блоков питания, промышленной техники и самодельных электронных радиоустройств - сигнализаций, автомагнитол, часов на микроконтроллерах, радиопередатчиков и радиомикрофонов, жучков.

 Самодельные приборы

:: ЭЛЕКТРОННЫЙ МИКРООММЕТР ::


   Часто приходится сталкиваться с тем, что при намотке новой катушки индуктивности, или снятия катушки с ненужного блока, невозможно узнать ее параметры, а значит невозможно собрать колебательный контур нужной частоты. Обычно, если нет специального прибора, это делается «на глаз», берется провод определенного сечения, наматывается на стержень определенной проницаемости и формы. Далее индуктивность рассчитывается с помощью специальных формул. Конечно для опытных радиолюбителей это не проблема, они уже наловчились достаточно точно наматывать катушки с требуемой индуктивностью, иногда дополнительно используют для этого частотомеры и осциллографы.

   Для начинающих радиолюбителей это серьезная преграда в конструировании, тем более, если нет специальных приборов, которые пока еще очень дорогие. Подобная проблема подтолкнула меня к созданию простой в сборке и эффективной приставки к ПК, способной измерять параметры катушки индуктивности. Испробовав множество способов, пришел к более удачному решению, с помощью которого можно измерять не только индуктивность, но и очень малое сопротивление (единицы мкОм) и очень большую емкость (до 1 фарада), а также этот способ позволяет определить добротность и комплексное сопротивление реактивных элементов (на частоте 1 кГц). В этом решении все функции возлагаются на персональный компьютер, кроме одной - снятие данных с испытуемого элемента. Именно для этой функции спроектирована данная приставка. Она снимает уровень сигнала и преобразует его в удобный формат для последующей обработки функциональными звеньями, имеющимися в компьютере. Рассмотрим схему приставки. 

   В данной схеме используется трансформатор и служит он для:

  1. Уменьшения выходного сопротивления источника напряжения (выход звуковой карты) и согласование с опорным сопротивлением R1 равным 0.1 Ом, сопротивление источника напряжения должно быть меньше сопротивления R1. 

  2. Изоляции источника напряжения (выход звуковой карты). Легко реализуется подключение делителя из опорного R1 и измеряемого Rx сопротивления ко вторичной обмотке трансформатора как к самостоятельному источнику напряжения. Первичная обмотка подключается непосредственно к выходу звуковой карты без дополнительного усилителя, чем значительно упрощает схему.

   Опорное сопротивление R1 должно быть как можно с меньшей индуктивностью, т.е. никаких витков, можно сделать самостоятельно из провода нихрома. Точность опорного сопротивления не важна, она только сдвигает измеряемый диапазон, а вот зависимость от температуры желательно минимизировать, стараться использовать сопротивление с наименьшим температурным коэффициентом. Резисторы делителей R8, R9 на инверсном, и R5, R6 на прямом входах операционного усилителя DA1.2 нужно подбирать точно, т.е. с одинаковым отношением и входным сопротивлением. От этого зависит показание минимального сопротивления. Если нет возможности найти равные сопротивления, то нужно установить дополнительный подстрочный резистор R4, на схеме именно так и показано. В ходе калибровки, когда на зажимах будет установлен шунт с минимальным сопротивлением, надо резистором R4 выставить минимальное показание.

   Коэффициент усиления DA1.2 выбран около 10, в ходе экспериментов установлено, что при большем коэффициенте усиления ОУ появляются дополнительные шумы, что приводит к повышению погрешности. Для устранения шумов от пульсаций питания USB порта в приставке применен стабилизатор LM1117, можно использовать другие стабилизаторы с выходным напряжением стабилизации не менее З.З в., так как ОУ К157УД2 рассчитан на минимальное напряжение питания равное З в. Если невозможно найти стабилизатор, то вместо стабилизатора между 2 и 3 контактом можно поставить резистор 100 Ом, при этом сопротивления R12, R13 надо исключить, но данное изменение немного повысит шумы, а значит и погрешность. Как и в предыдущей разработке, измерение производится косвенным методом, т.е. даже при незначительном изменении сопротивления измерительных проводов и контактов зажимов показания не меняются , т. к. эти изменения пропорциональны току и напряжению одновременно, а в расчетах они взаимно вычитаются. Для устранения влияния наводок на показания провода напряжения и токовые должны быть скручены (кстати, наводки в моем случае я даже и не обнаружил), это дополнительная мера.

   Токовый провод должен быть толстым, не менее 1 кв. мм в сечении медного провода, также он должен быть многожильный, удобный для использования. Трансформатор можно взять из старых трансляционных громкоговорителей, мощность трансформатора не менее 1Вт., допускается использовать трансформатор от блоков питания рассчитанных на 50Гц. Вторичная обмотка наматывается так, чтобы коэффициент трансформации был около 30, т.е. выходное сопротивление уменьшилось в 900 раз. Например, если выход звуковой карты 100 Ом, то после трансформатора уже будет около 100/900 примерно О.Юм. Вторичная обмоткатрансформатора наматывается тоже толстым медным проводом не менее 1 кв. мм в сечении.

   Вообще данное схематическое решение настолько универсально, что при небольших изменениях можно измерять нано-Омы или Гиго-Омы, только для этого надо будет подключить дополнительный усилитель мощности, установить трансформатор с соответствующим коэффициентом трансформации и изменить сопротивление R1 и R7, но это уже ни кому не нужно, разве что измерять металлическую обшивку подводной лодки на дефект трещин или толщины обшивки космического корабля. Для измерения Гиго-Ом, еще нужно будет изменить и сопротивления R6, R8. Измерительные зажимы должны быть с двумя контактами на каждой стороне, подобные зажимы называются «зажимами Кельвина». Если таких нет, то можно на первое время изготовить из пластмассовых бельевых прищепок. С каждой стороны прищепки прикрепить медные пластины, с припаянными проводами.

   Итак, получилась приставка к компьютеру, с помощь которой можно измерить элемент со следующими параметрами: 

 

- диапазон измерений сопротивлений — от 10 мкОм до 100 Ом; 

- диапазон измерений емкости — от 1 мкФ до 1 Ф.; 

- диапазон измерений индуктивности — от 10 нГн до 10 мГн.

    Перед использованием нужно будет калибровать приставку. Сперва зажимы электрически разрываем, друг от друга (нажимаем кнопку «Щуп разорван»), потом подключаем калибровочный резистор, например 1 Ом, калибруем (нажимаем кнопку «Калибровочный резистор»), а после устанавливаем нуль (нажимаем кнопку «Установка нуля»), зажав в щупах шунт с минимальным сопротивлением. Если вы не уверены что шунт имеет сопротивление меньше 1 мкОм, установку нуля можно не делать. После калибровки нельзя менять установки микшера. Если все-таки эти установки изменились, приставку нужно заново калибровать.

    С помощью такой приставки можно будет измерять индуктивность катушек ВЧ контуров, их добротность (на частоте 1 КГц), емкость и ESR конденсаторов, сопротивление контактов электромагнитных реле, различных коммутационных приборов, переходов открытого полевого транзистора, сравнивать параметры обмоток двигателей, и т.д.




Поделитесь полезными схемами



ДЕТЕКТОР ТЕЛЕФОНОВ

      Для того, чтобы удобно использовать данный детектор, я встроил его в мультимитер, хотя так делать нежелательно, хоть и удобно. Чтобы не мешать другим измерения, прицепил к схеме кнопку.


ПАЯЛЬНИК ИЗ ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

    По сути, жало паяльника закаляется из-за короткого замыкания. Вторичная обмотка содержит пол витка, напряжение прядка 1 вольта, но сила тока доходит до 15 Ампер! Именно из-за пониженного напряжения, нагрузка не столь велика, в ходе работы детали почти холодные.


УСТРОЙСТВО ВИП СИГНАЛА

    Схема из себя представляет достаточно мощный двухтактный преобразователь напряжения. Сигнал поступает с пульта управления на маломощный усилитель низкой частоты, который выполнен на микросхеме LM386.


КАК ЗАРЯДИТЬ НОУТБУК ОТ АВТО

    Иногда возникает необходимость зарядить ноутбук от бортовой сети автомобиля, но 12 вольт явно маловато для зарядки ноутбука. Так как же быть? На помощь приходит достаточно простой преобразователь 12-18 вольт с достаточно мощным выходным током 3 ампера. Основа преобразователя отечественная микросхема серии КР1006ВИ1, которую можно заменить на более распространенный импортный аналог NE555. 


ЭЛЕКТРОМЕТРОНОМ

   Очень часто на уроках физики при демонстрации опытов 
необходимо замерять время наблюдаемого явления. Можно использовать секундомер, но когда его нет под рукой приходится как-то выходить из положения. Для этого используют прибор, который называется метрономом. Самый распространенный метроном – механический, частоту которого можно изменять специальным ползунком, который прикреплен к маятнику, но в некоторых школах нет даже и таких метрономов.





КАК СДЕЛАТЬ МАТРИЦУ ИЗ СВЕТОДИОДОВ

   Несложная LED матрица 8х8 элементов, которая может показывать бегущую строку управляемую Ардуино.


ПРОСТЕЙШИЙ ЭЛЕКТРОДВИГАТЕЛЬ

   Пальчиковая батарейка, круглый магнит и проволока - вот и всё, что нужно для электромоторчика.


ПРОСТОЕ РАДИО НА ОДНОМ ТРАНЗИСТОРЕ

   Самое простое FM радиоприёмное устройство на полевом транзисторе MPF102 - принципиальная схема.


ПРИБОР ДЛЯ КОНТРОЛЯ РАДИАЦИИ НА МИКРОКОНТРОЛЛЕРЕ

   Принципиальная схема микроконтроллерного дозиметра с LCD, на базе счётчика Гейгера СБМ-20 и PIC16F684.


СХЕМА ДОЗИМЕТРА НА СБМ-20

   Измеритель уровня радиации на микроконтроллере PIC18F2550 - схема и конструкция.


АНТИМОСКИТНАЯ ЛАМПА ПРОТИВ КОМАРОВ

   Высоковольтная лампа для уничтожения комаров - обзор нового китайского устройства, приманивающего и устраняющего вредных насекомых.


СХЕМА АУДИО КОМПРЕССОРА

   Небольшая самодельная приставка для выравнивания минимальных и максимальных уровней сигнала звука.


СХЕМА ДЛЯ МИГАНИЯ СВЕТОДИОДОВ

   Самая простая мигалка для 2-х светодиодов - по научному симметричный мультивибратор.


ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

     Приставка электронный предохранитель на полевом транзисторе, для защиты цепей постоянного тока до 5 А.


УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ

   Защита от короткого замыкания для практически любого источника питания - принципиальная схема отдельного подключаемого модуля.

Радиолюбительский портал по самодельным устройствам и электронным самоделкам, собранными своими руками