САМОДЕЛЬНЫЕ РАДИОУСТРОЙСТВА

Новые простые схемы зарядных устройств, усилителей, блоков питания, промышленной техники и самодельных электронных радиоустройств - сигнализаций, автомагнитол, часов на микроконтроллерах, радиопередатчиков и радиомикрофонов, жучков.



 Самодельные приборы

:: ЭЛЕКТРОННЫЙ МИКРООММЕТР ::


   Часто приходится сталкиваться с тем, что при намотке новой катушки индуктивности, или снятия катушки с ненужного блока, невозможно узнать ее параметры, а значит невозможно собрать колебательный контур нужной частоты. Обычно, если нет специального прибора, это делается «на глаз», берется провод определенного сечения, наматывается на стержень определенной проницаемости и формы. Далее индуктивность рассчитывается с помощью специальных формул. Конечно для опытных радиолюбителей это не проблема, они уже наловчились достаточно точно наматывать катушки с требуемой индуктивностью, иногда дополнительно используют для этого частотомеры и осциллографы.

   Для начинающих радиолюбителей это серьезная преграда в конструировании, тем более, если нет специальных приборов, которые пока еще очень дорогие. Подобная проблема подтолкнула меня к созданию простой в сборке и эффективной приставки к ПК, способной измерять параметры катушки индуктивности. Испробовав множество способов, пришел к более удачному решению, с помощью которого можно измерять не только индуктивность, но и очень малое сопротивление (единицы мкОм) и очень большую емкость (до 1 фарада), а также этот способ позволяет определить добротность и комплексное сопротивление реактивных элементов (на частоте 1 кГц). В этом решении все функции возлагаются на персональный компьютер, кроме одной - снятие данных с испытуемого элемента. Именно для этой функции спроектирована данная приставка. Она снимает уровень сигнала и преобразует его в удобный формат для последующей обработки функциональными звеньями, имеющимися в компьютере. Рассмотрим схему приставки. 

   В данной схеме используется трансформатор и служит он для:

  1. Уменьшения выходного сопротивления источника напряжения (выход звуковой карты) и согласование с опорным сопротивлением R1 равным 0.1 Ом, сопротивление источника напряжения должно быть меньше сопротивления R1. 

  2. Изоляции источника напряжения (выход звуковой карты). Легко реализуется подключение делителя из опорного R1 и измеряемого Rx сопротивления ко вторичной обмотке трансформатора как к самостоятельному источнику напряжения. Первичная обмотка подключается непосредственно к выходу звуковой карты без дополнительного усилителя, чем значительно упрощает схему.

   Опорное сопротивление R1 должно быть как можно с меньшей индуктивностью, т.е. никаких витков, можно сделать самостоятельно из провода нихрома. Точность опорного сопротивления не важна, она только сдвигает измеряемый диапазон, а вот зависимость от температуры желательно минимизировать, стараться использовать сопротивление с наименьшим температурным коэффициентом. Резисторы делителей R8, R9 на инверсном, и R5, R6 на прямом входах операционного усилителя DA1.2 нужно подбирать точно, т.е. с одинаковым отношением и входным сопротивлением. От этого зависит показание минимального сопротивления. Если нет возможности найти равные сопротивления, то нужно установить дополнительный подстрочный резистор R4, на схеме именно так и показано. В ходе калибровки, когда на зажимах будет установлен шунт с минимальным сопротивлением, надо резистором R4 выставить минимальное показание.

   Коэффициент усиления DA1.2 выбран около 10, в ходе экспериментов установлено, что при большем коэффициенте усиления ОУ появляются дополнительные шумы, что приводит к повышению погрешности. Для устранения шумов от пульсаций питания USB порта в приставке применен стабилизатор LM1117, можно использовать другие стабилизаторы с выходным напряжением стабилизации не менее З.З в., так как ОУ К157УД2 рассчитан на минимальное напряжение питания равное З в. Если невозможно найти стабилизатор, то вместо стабилизатора между 2 и 3 контактом можно поставить резистор 100 Ом, при этом сопротивления R12, R13 надо исключить, но данное изменение немного повысит шумы, а значит и погрешность. Как и в предыдущей разработке, измерение производится косвенным методом, т.е. даже при незначительном изменении сопротивления измерительных проводов и контактов зажимов показания не меняются , т. к. эти изменения пропорциональны току и напряжению одновременно, а в расчетах они взаимно вычитаются. Для устранения влияния наводок на показания провода напряжения и токовые должны быть скручены (кстати, наводки в моем случае я даже и не обнаружил), это дополнительная мера.

   Токовый провод должен быть толстым, не менее 1 кв. мм в сечении медного провода, также он должен быть многожильный, удобный для использования. Трансформатор можно взять из старых трансляционных громкоговорителей, мощность трансформатора не менее 1Вт., допускается использовать трансформатор от блоков питания рассчитанных на 50Гц. Вторичная обмотка наматывается так, чтобы коэффициент трансформации был около 30, т.е. выходное сопротивление уменьшилось в 900 раз. Например, если выход звуковой карты 100 Ом, то после трансформатора уже будет около 100/900 примерно О.Юм. Вторичная обмоткатрансформатора наматывается тоже толстым медным проводом не менее 1 кв. мм в сечении.

   Вообще данное схематическое решение настолько универсально, что при небольших изменениях можно измерять нано-Омы или Гиго-Омы, только для этого надо будет подключить дополнительный усилитель мощности, установить трансформатор с соответствующим коэффициентом трансформации и изменить сопротивление R1 и R7, но это уже ни кому не нужно, разве что измерять металлическую обшивку подводной лодки на дефект трещин или толщины обшивки космического корабля. Для измерения Гиго-Ом, еще нужно будет изменить и сопротивления R6, R8. Измерительные зажимы должны быть с двумя контактами на каждой стороне, подобные зажимы называются «зажимами Кельвина». Если таких нет, то можно на первое время изготовить из пластмассовых бельевых прищепок. С каждой стороны прищепки прикрепить медные пластины, с припаянными проводами.

   Итак, получилась приставка к компьютеру, с помощь которой можно измерить элемент со следующими параметрами: 

 

- диапазон измерений сопротивлений — от 10 мкОм до 100 Ом; 

- диапазон измерений емкости — от 1 мкФ до 1 Ф.; 

- диапазон измерений индуктивности — от 10 нГн до 10 мГн.

    Перед использованием нужно будет калибровать приставку. Сперва зажимы электрически разрываем, друг от друга (нажимаем кнопку «Щуп разорван»), потом подключаем калибровочный резистор, например 1 Ом, калибруем (нажимаем кнопку «Калибровочный резистор»), а после устанавливаем нуль (нажимаем кнопку «Установка нуля»), зажав в щупах шунт с минимальным сопротивлением. Если вы не уверены что шунт имеет сопротивление меньше 1 мкОм, установку нуля можно не делать. После калибровки нельзя менять установки микшера. Если все-таки эти установки изменились, приставку нужно заново калибровать.

    С помощью такой приставки можно будет измерять индуктивность катушек ВЧ контуров, их добротность (на частоте 1 КГц), емкость и ESR конденсаторов, сопротивление контактов электромагнитных реле, различных коммутационных приборов, переходов открытого полевого транзистора, сравнивать параметры обмоток двигателей, и т.д.






Поделитесь полезными схемами



ИНСТРУМЕНТ ЭЛЕКТРИКА
   Инструмент электрика - все необходимые инструменты, необходимые профессиональному электрику для монтажных и ремонтных работ.

ПРОСТАЯ САМОДЕЛЬНАЯ РАЦИЯ

   Схема простой самодельной радиостанции состоит из ВЧ генератора и ЗЧ-усилителя. Обе части работают как на прием, так и на передачу. Приемник – сверх регенеративный детектор. Сигнал снимается с коллектора транзистора VT1. Передатчик представляет собой ЗЧ-усилитель, нагруженный ВЧ-генератором, с выходом сигнала на телескопическую антенну.


ЭЛЕКТРОЗАЖИГАЛКА

    Простой высоковольтный преобразователь, на выходе которого образуется высокое напряжение в виде электрических разрядов. Напряжение этих разрядов может достигать нескольких десятков тысяч вольт, но сила тока слишком мала, поэтому никакой опасности из себя такая зажигалка не представляет.


КОНТРОЛЛЕР ВЕНТИЛЯТОРА КОМПЬЮТЕРА

   Простой модуль управления вентиляторами охлаждения компьютера в зависимости от температуры - схема на основе микросхемы LM317 и терморезистора.


ТАЙМЕР ПОДАЧИ ВОДЫ

   Автоматический электронный таймер для подачи воды в бассейн - схема на микроконтроллере для самостоятельной сборки.





Ремонт блоков питания компьютера

Ремонт компьютеров различной степени сложности осуществить  сложно


Как ленточные конвейеры облегчают работу шахты?

Ленточные конвейеры — это профессиональные рабочие устройства, которые используются во многих отраслях промышленности и хозяйства. 


Как самостоятельно сделать угольную маску?

В период, когда пандемия коронавируса бушует по всему миру, каждый хочет защититься от опасных вирусов.


Особенности зимней стройки

Строительство обычно проводится в теплое время года. Однако кто сказал, что строить зимой нельзя?


Что собой представляет сварочный инвертор

Сегодня сварку активно используют не только для строительных и монтажных процедур, но и при выполнении различных бытовых работ.


Игровые автоматы Плей Фортуна

Для любителей азартных игр на просторах интернета представлены много игровых площадок, удовлетворяющих требования своих игроков.


Что делать если зависает компьютер

Постепенное снижение работоспособности и производительности компьютера - одна из наиболее частотных проблем, с которой сталкиваются пользователи любого ПК.


Gaminator Slot — игровые автоматы бесплатно

Несмотря на большой ассортимент игровых автоматов, наибольшей популярностью пользуются Гаминаторы.


Для тех, кто любит и знает мир спорта — полная версия Вулкан ставка на спорт

Отличные знания спортивных игр и событий могут значительно улучшить финансовое положение. Для этого существуют букмекерские конторы, где можно воспользоваться опытом прогнозирования в спорте и заработать.


Игровые автоматы на деньги в 2020 году

Очень много игроков уже давно просиживают вечера в казино-онлайн.




Радиолюбительский портал по самодельным устройствам и электронным самоделкам, собранными своими руками