ЭКВИВАЛЕНТ НАГРУЗКИ

САМОДЕЛЬНЫЕ РАДИОУСТРОЙСТВА

Новые простые схемы зарядных устройств, усилителей, блоков питания, промышленной техники и самодельных электронных радиоустройств - сигнализаций, автомагнитол, часов на микроконтроллерах, радиопередатчиков и радиомикрофонов, жучков.

 Самоделки электрические

:: ЭКВИВАЛЕНТ НАГРУЗКИ ::


   Принципиальная схема эквивалента нагрузки для БП. Для проверки и налаживания блоков питания, особенно мощных, требуется низкоомная регулируемая нагрузка с допустимой рассеиваемой мощностью до сотни ватт.


   Применение для этой цели переменных резисторов не всегда возможно, в основном из-за ограниченной мощности рассеяния. Схема показана на рисунке ниже. На ОУ DA1.2 и полевом транзисторе VT2 собран стабилизатор тока. Ток через полевой транзистор (IVT2) зависит от сопротивления датчика тока RI (резисторов R11—R18) и напряжения на движке переменного резистора R8 (UR8), которым регулируют ток: IVT2 = UR8/RI. Конденсатор С4 подавляет высокочастотные помехи, а С5 и С6 в цепи обратной связи ОУ DA1.2 и полевого транзистора соответственно повышают устойчивость работы стабилизатора.

   Питается ОУ от повышающего стабилизированного преобразователя напряжения с выходным напряжением 5 В, собранного на микросхеме DA2. Это же напряжение через резистор R7 поступает на регулятор тока. Благодаря преобразователю напряжения устройство можно питать от испытываемого источника питания. При этом минимальное входное напряжение — 0,8…1 В, что позволяет применять предлагаемый эквивалент для проверки и измерения параметров Ni-Cd и Ni-MH аккумуляторов типоразмера АА или ААА.

   На ОУ DA1.1 и транзисторе VT1 собран ограничитель напряжения питания преобразователя. При входном напряжении менее 3,8 В на выходе ОУ DA1.1 присутствует напряжение около 4 В, транзистор VT1 открыт полностью и питающее напряжение поступает на преобразователь. Когда входное напряжение превышает 3,8 В, напряжение на выходе ОУ DA1.1 снижается, поэтому рост напряжения на эмиттере транзистора VT1 прекращается и оно остаётся стабильным. Ограничитель напряжения необходим, поскольку предельное значение питающего напряжения микросхемы преобразователя 6 В.

   Все элементы, кроме переменного резистора, полевого транзистора, разъёма, вентилятора и конденсатора С6, монтируют на односторонней печатной плате. Применён теплоотвод с вентилятором на напряжение 12 В от процессора персонального компьютера. Транзистор и разъём крепят к теплоотводу винтами, а плату приклеивают. Применение теплопроводящей пасты для транзистора обязательно. 


   Двигатель вентилятора начинает вращение при входном напряжении 3…4 В и при 8…10 В уже достаточно эффективно обдувает теплоотвод. Для данного варианта конструкции применён датчик тока с суммарным сопротивлением 0,05 Ом и рассеиваемой мощностью 8 Вт, поэтому максимальный ток эквивалента — 12 А, а максимальная рассеиваемая мощность не превышает 100 Вт. Применив более мощные резисторы в качестве датчика тока и более эффективный теплоотвод, можно соответственно увеличить и ток, и рассеиваемую мощность. Максимальное входное напряжение в данном случае зависит от допустимого напряжения питания вентилятора.


   Устройство размещают в корпусе подходящего размера (подойдёт корпус от блока питания персонального компьютера), на передней панели устанавливают входные гнёзда, соединённые с разъёмом Х1, и переменный резистор, который можно снабдить проградуированной шкалой. Теплоотвод следует изолировать от металлического корпуса, поскольку он имеет гальваническую связь со стоком полевого транзистора.

   Максимальное значение тока устанавливают подборкой резистора R7, при этом движок переменного резистора R8 должен быть в верхнем по схеме положении. Поскольку электродвигатель вентилятора подключён непосредственно к входному разъёму, ток, потребляемый им, складывается с током стабилизатора, поэтому при изменении входного напряжения суммарный ток также изменяется. Чтобы этот ток был стабильным, нижний по схеме вывод электродвигателя подключают не к минусовой линии питания, а к истоку полевого транзистора.

   Предлагаемый эквивалент нагрузки можно использовать для проверки источников питания переменного тока частотой 50 Гц, например, понижающих трансформаторов. В этом случае устройство подключают (с соблюдением полярности) к выходу выпрямительного моста, в котором желательно применить диоды Шотки. Между плюсовым выводом конденсатора С1 и точкой соединения резистора R3 и коллектора транзистора VT1 устанавливают диод того же типа, что и VD1, а ёмкость конденсатора С2 следует увеличить до 100 мкФ. В диодном мосте диоды должны быть рассчитаны на ток эквивалента. Следует учесть, что в этом случае минимальное и максимально допустимое напряжение возрастёт на величину падения напряжения на диодах моста и дополнительном диоде.




Поделитесь полезными схемами



РЕМОНТ ЭНЕРГОСБЕРЕГАЛКИ
    Аккуратно открыл сгоревшую КЛЛ, открывал очень просто - поддев обычной отверткой. При вскрытии оказалось, что взорвался электролитический конденсатор емкостью 6.8 мкФ.  

СХЕМА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ

СБОРКА ДВУХТАКТНОГО ПРЕОБРАЗОВАТЕЛЯ    Работа двухтактного преобразователя достаточно проста, транзисторы поочередно открываясь и закрываясь создают в первичной обмотке трансформатора переменное напряжение высокой частоты. Трансформатор мотается на желтом ферритовом кольце из компьютерного блока питания, хотя можно использовать и кольца марки 2000НМ.


КАК СДЕЛАТЬ ГЛУШИЛКУ

     Как сделать самому постановщик помех, для нейтрализации громкого шума от нехороших соседей? Предлагаемая глушилка предназначена для локального подавления сигналов ТВ и FM радио. Хочу сразу напомнить, что за постановку искусственных помех штраф на 20-70 минималок, с конфискацией технических средств ст. 139-3 КОАП РФ.


СХЕМА ИИП

   Принципиальная схема ИИП изображена на рисунке ниже. Как видно, это преобразователь с внешним возбуждением без стабилизации выходного напряжения. На входе устройства включен высокочастотный фильтр C1L1C2, предотвращающий попадание помех в сеть. Пройдя его, сетевое напряжение выпрямляется диодным мостом VD1—VD4, пульсации сглаживаются конденсатором С3.


ЦИФРОВОЙ ТАХОМЕТР СВОИМИ РУКАМИ

   Прибор для измерения оборотов двигателя или любого другого вала в минуту - оптический тахометр на Ардуино.





КАК СДЕЛАТЬ МАТРИЦУ ИЗ СВЕТОДИОДОВ

   Несложная LED матрица 8х8 элементов, которая может показывать бегущую строку управляемую Ардуино.


ПРОСТЕЙШИЙ ЭЛЕКТРОДВИГАТЕЛЬ

   Пальчиковая батарейка, круглый магнит и проволока - вот и всё, что нужно для электромоторчика.


ПРОСТОЕ РАДИО НА ОДНОМ ТРАНЗИСТОРЕ

   Самое простое FM радиоприёмное устройство на полевом транзисторе MPF102 - принципиальная схема.


ПРИБОР ДЛЯ КОНТРОЛЯ РАДИАЦИИ НА МИКРОКОНТРОЛЛЕРЕ

   Принципиальная схема микроконтроллерного дозиметра с LCD, на базе счётчика Гейгера СБМ-20 и PIC16F684.


СХЕМА ДОЗИМЕТРА НА СБМ-20

   Измеритель уровня радиации на микроконтроллере PIC18F2550 - схема и конструкция.


АНТИМОСКИТНАЯ ЛАМПА ПРОТИВ КОМАРОВ

   Высоковольтная лампа для уничтожения комаров - обзор нового китайского устройства, приманивающего и устраняющего вредных насекомых.


СХЕМА АУДИО КОМПРЕССОРА

   Небольшая самодельная приставка для выравнивания минимальных и максимальных уровней сигнала звука.


СХЕМА ДЛЯ МИГАНИЯ СВЕТОДИОДОВ

   Самая простая мигалка для 2-х светодиодов - по научному симметричный мультивибратор.


ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

     Приставка электронный предохранитель на полевом транзисторе, для защиты цепей постоянного тока до 5 А.


УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ

   Защита от короткого замыкания для практически любого источника питания - принципиальная схема отдельного подключаемого модуля.

Радиолюбительский портал по самодельным устройствам и электронным самоделкам, собранными своими руками